get_membership-ConsensusPartition-method.Rd
Get membership matrix
# S4 method for ConsensusPartition
get_membership(object, k, each = FALSE)
A ConsensusPartition-class
object.
Number of subgroups.
Whether to return the percentage membership matrix which is summarized from all partitions or the individual membership in every single partition run.
If each == FALSE
, the value in the membership matrix is the probability
to be in one subgroup, while if each == TRUE
, the membership matrix contains the
subgroup labels for every single partitions which are from randomly sampling from the original matrix.
The percent membership matrix is calculated by cl_consensus
.
If each == FALSE
, it returns a membership matrix where rows correspond to the columns from the subgroups.
If each == TRUE
, it returns a membership matrix where rows correspond to the columns from the original matrix.
get_membership,ConsensusPartitionList-method
summarizes membership from partitions from all combinations
of top-value methods and partitioning methods.
data(golub_cola)
obj = golub_cola["ATC", "skmeans"]
get_membership(obj, k = 2)
#> p1 p2
#> sample_39 0.00 1.00
#> sample_40 0.00 1.00
#> sample_42 1.00 0.00
#> sample_47 1.00 0.00
#> sample_48 1.00 0.00
#> sample_49 0.00 1.00
#> sample_41 1.00 0.00
#> sample_43 1.00 0.00
#> sample_44 1.00 0.00
#> sample_45 1.00 0.00
#> sample_46 1.00 0.00
#> sample_70 1.00 0.00
#> sample_71 1.00 0.00
#> sample_72 1.00 0.00
#> sample_68 1.00 0.00
#> sample_69 1.00 0.00
#> sample_67 1.00 0.00
#> sample_55 0.00 1.00
#> sample_56 0.00 1.00
#> sample_59 1.00 0.00
#> sample_52 0.00 1.00
#> sample_53 0.00 1.00
#> sample_51 0.00 1.00
#> sample_50 0.00 1.00
#> sample_54 1.00 0.00
#> sample_57 0.00 1.00
#> sample_58 0.00 1.00
#> sample_60 1.00 0.00
#> sample_61 0.00 1.00
#> sample_65 0.00 1.00
#> sample_66 1.00 0.00
#> sample_63 0.00 1.00
#> sample_64 0.00 1.00
#> sample_62 0.00 1.00
#> sample_1 0.00 1.00
#> sample_2 1.00 0.00
#> sample_3 0.00 1.00
#> sample_4 0.06 0.94
#> sample_5 1.00 0.00
#> sample_6 0.00 1.00
#> sample_7 0.00 1.00
#> sample_8 0.00 1.00
#> sample_9 1.00 0.00
#> sample_10 1.00 0.00
#> sample_11 1.00 0.00
#> sample_12 0.00 1.00
#> sample_13 1.00 0.00
#> sample_14 1.00 0.00
#> sample_15 1.00 0.00
#> sample_16 1.00 0.00
#> sample_17 1.00 0.00
#> sample_18 0.90 0.10
#> sample_19 1.00 0.00
#> sample_20 1.00 0.00
#> sample_21 1.00 0.00
#> sample_22 0.00 1.00
#> sample_23 0.00 1.00
#> sample_24 1.00 0.00
#> sample_25 0.00 1.00
#> sample_26 1.00 0.00
#> sample_27 0.00 1.00
#> sample_34 0.00 1.00
#> sample_35 0.00 1.00
#> sample_36 0.00 1.00
#> sample_37 0.00 1.00
#> sample_38 0.00 1.00
#> sample_28 0.00 1.00
#> sample_29 1.00 0.00
#> sample_30 0.00 1.00
#> sample_31 0.00 1.00
#> sample_32 0.00 1.00
#> sample_33 0.00 1.00
get_membership(obj, k = 2, each = TRUE)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
#> [1,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [19,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [22,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [23,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [24,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [26,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [27,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [28,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [29,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [30,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [31,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [32,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [33,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [34,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [35,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [36,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [37,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [38,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [39,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [40,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [41,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [42,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [43,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [44,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [45,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [46,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [47,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [48,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [49,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [50,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [51,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [52,] 1 1 1 1 1 2 2 2 1 1 1 1 1
#> [53,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [54,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [55,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [56,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [57,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [58,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [59,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [60,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [61,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [62,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [63,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [64,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [65,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [66,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [67,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [68,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [69,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [70,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [71,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [72,] 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
#> [1,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [19,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [22,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [23,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [24,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [26,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [27,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [28,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [29,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [30,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [31,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [32,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [33,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [34,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [35,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [36,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [37,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [38,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [39,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [40,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [41,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [42,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [43,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [44,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [45,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [46,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [47,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [48,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [49,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [50,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [51,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [52,] 2 1 1 1 1 1 1 1 1 1 1 1
#> [53,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [54,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [55,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [56,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [57,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [58,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [59,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [60,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [61,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [62,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [63,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [64,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [65,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [66,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [67,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [68,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [69,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [70,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [71,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [72,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
#> [1,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [19,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [22,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [23,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [24,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [26,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [27,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [28,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [29,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [30,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [31,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [32,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [33,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [34,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [35,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [36,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [37,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [38,] 2 2 2 2 2 1 2 2 2 2 2 2
#> [39,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [40,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [41,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [42,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [43,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [44,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [45,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [46,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [47,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [48,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [49,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [50,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [51,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [52,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [53,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [54,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [55,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [56,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [57,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [58,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [59,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [60,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [61,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [62,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [63,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [64,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [65,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [66,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [67,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [68,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [69,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [70,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [71,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [72,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49]
#> [1,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [19,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [22,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [23,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [24,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [26,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [27,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [28,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [29,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [30,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [31,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [32,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [33,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [34,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [35,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [36,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [37,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [38,] 2 2 2 1 2 2 2 2 2 2 2 2
#> [39,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [40,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [41,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [42,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [43,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [44,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [45,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [46,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [47,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [48,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [49,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [50,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [51,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [52,] 1 1 1 1 1 1 1 1 2 1 1 1
#> [53,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [54,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [55,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [56,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [57,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [58,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [59,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [60,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [61,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [62,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [63,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [64,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [65,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [66,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [67,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [68,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [69,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [70,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [71,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [72,] 2 2 2 2 2 2 2 2 2 2 2 2
#> [,50]
#> [1,] 2
#> [2,] 2
#> [3,] 1
#> [4,] 1
#> [5,] 1
#> [6,] 2
#> [7,] 1
#> [8,] 1
#> [9,] 1
#> [10,] 1
#> [11,] 1
#> [12,] 1
#> [13,] 1
#> [14,] 1
#> [15,] 1
#> [16,] 1
#> [17,] 1
#> [18,] 2
#> [19,] 2
#> [20,] 1
#> [21,] 2
#> [22,] 2
#> [23,] 2
#> [24,] 2
#> [25,] 1
#> [26,] 2
#> [27,] 2
#> [28,] 1
#> [29,] 2
#> [30,] 2
#> [31,] 1
#> [32,] 2
#> [33,] 2
#> [34,] 2
#> [35,] 2
#> [36,] 1
#> [37,] 2
#> [38,] 1
#> [39,] 1
#> [40,] 2
#> [41,] 2
#> [42,] 2
#> [43,] 1
#> [44,] 1
#> [45,] 1
#> [46,] 2
#> [47,] 1
#> [48,] 1
#> [49,] 1
#> [50,] 1
#> [51,] 1
#> [52,] 1
#> [53,] 1
#> [54,] 1
#> [55,] 1
#> [56,] 2
#> [57,] 2
#> [58,] 1
#> [59,] 2
#> [60,] 1
#> [61,] 2
#> [62,] 2
#> [63,] 2
#> [64,] 2
#> [65,] 2
#> [66,] 2
#> [67,] 2
#> [68,] 1
#> [69,] 2
#> [70,] 2
#> [71,] 2
#> [72,] 2