Example HierarchicalPartition object from Golub dataset

data(golub_cola_rh)

Details

Following code was used to generate golub_cola_rh:


    library(cola)
    data(golub_cola)
    m = get_matrix(golub_cola)
    set.seed(123)
    golub_cola_rh = hierarchical_partition(
        m, cores = 6, 
        anno = get_anno(golub_cola), 
        anno_col = get_anno_col(golub_cola)
    )  

Author

Zuguang Gu <z.gu@dkfz.de>

Examples

data(golub_cola_rh)
golub_cola_rh
#> A 'HierarchicalPartition' object with 'ATC:skmeans' method.
#>   On a matrix with 4116 rows and 72 columns.
#>   Performed in total 1350 partitions.
#>   There are 6 groups under the following parameters:
#>     - min_samples: 6
#>     - mean_silhouette_cutoff: 0.9
#>     - min_n_signatures: 103 (signatures are selected based on:)
#>       - fdr_cutoff: 0.05
#>       - group_diff (scaled values): 0.5
#> 
#> Hierarchy of the partition:
#>   0, 72 cols, 2068 signatures
#>   |-- 01, 35 cols, 652 signatures
#>   |   |-- 011, 11 cols (b)
#>   |   |-- 012, 13 cols, 5 signatures (c)
#>   |   `-- 013, 11 cols (b)
#>   |-- 02, 24 cols, 138 signatures
#>   |   |-- 021, 13 cols (a)
#>   |   `-- 022, 11 cols (b)
#>   `-- 03, 13 cols, 7 signatures (c)
#> Stop reason:
#>   a) Mean silhouette score was too small
#>   b) Subgroup had too few columns.
#>   c) There were too few signatures.
#> 
#> Following methods can be applied to this 'HierarchicalPartition' object:
#>  [1] "all_leaves"            "all_nodes"             "cola_report"          
#>  [4] "collect_classes"       "colnames"              "compare_signatures"   
#>  [7] "dimension_reduction"   "functional_enrichment" "get_anno"             
#> [10] "get_anno_col"          "get_children_nodes"    "get_classes"          
#> [13] "get_matrix"            "get_signatures"        "is_leaf_node"         
#> [16] "max_depth"             "merge_node"            "ncol"                 
#> [19] "node_info"             "node_level"            "nrow"                 
#> [22] "rownames"              "show"                  "split_node"           
#> [25] "suggest_best_k"        "test_to_known_factors" "top_rows_heatmap"     
#> [28] "top_rows_overlap"     
#> 
#> You can get result for a single node by e.g. object["01"]