Sim_Resnik_1999
Sim_Resnik_1999(dag, terms, norm_method = "Nmax", verbose = simona_opt$verbose)
The IC method is fixed to IC_annotation
.
The original Resnik similarity is the IC of the MICA term. There are three ways to normalize the Resnik similarity into the scale of [0, 1]
:
Nunif
= IC(c)/log(N) sim
where N
is the total number of items annotated to the whole DAG, i.e. number of items annotated to the root. Then the IC
of a term with only one item annotated is -log(1/N)
= log(N)` which is the maximal IC value in the DAG.
Nmax
IC_max
is the maximal IC of all terms. If there is a term with only one item annotated, Nmax
is identical to the `Nunif* method.
= IC(c)/IC_max sim
Nunivers
The IC is normalized by the maximal IC of term a
and b
.
= IC(c)/max(IC(a), IC(b)) sim
Paper link: doi:10.1613/jair.514 , doi:10.1186/1471-2105-9-S5-S4 , doi:10.1186/1471-2105-11-562 , doi:10.1155/2013/292063 .
The normalization method can be set with the norm_method
parameter:
term_sim(dag, terms, control = list(norm_method = "Nmax"))
Possible values for the norm_method
parameter are "Nunif", "Nmax", "Nunivers" and "none".