Over-representation analysis
Usage
ora(genes, gs, universe = NULL, min_hits = 3, min_size = 5, max_size = 2000)
ora_go(genes, org_db = org.Hs.eg.db::org.Hs.eg.db, ontology = "BP", ...)
ora_kegg(genes, organism = "hsa", db = "pathway", ...)
ora_msigdb(genes, collection = "h.all", version = "2024.1.Hs", ...)
ora_reactome(genes, organism = "HSA", ...)
ora_keywords(genes, organism = "human", ...)
ora_phenotype(genes, organism = "human", ...)
ora_disease(genes, organism = "human", ...)Arguments
- genes
A vector of genes.
- gs
A list of gene sets. Genes should have the smae ID type as in
genes.- universe
A vector of background genes.
- min_hits
Minimal number of overlapping genes in
genesand gene sets.- min_size
Minimal number of genes in gene sets.
- max_size
Maximal number of genes in gene sets.
- org_db
An
OrgDbobject for the organism. It can be from org.*.db packages or downloaded by the AnnotationHub package.- ontology
Namespace of GO. Value should be one of "BP", "CC" or "MF".
- ...
Passed to
ora().- organism
See Details.
- db
A KEGG database. The value can be one of "pathway", "module", "ko", "network", "disease" and "drug".
- collection
Collection of the MSigDB gene sets. All possible values can be found via
list_msigdb_versions().- version
Version of the MSigDB database. All possible values can be found via
list_msigdb_collections().
Details
Except ora(), gene IDs in s in all ora_*() functions must be EntreZ IDs.
The value should be set differently for specific ora_*() functions.
for
ora_kegg(), the value should be a KEGG organism code, such as "hsa" or "mmu".for
ora_reactome(), the value should a prefix of the Reactome pathway ID that represents the organism. E.g. "HSA" for human.for
ora_keywords(), the value can be a organism name, e.g. "human", the latin name or the taxon ID.for
ora_phenotype()andfgsea_disease(), the value can only be one of "human", "mouse" and "rat".
All valid values for fgsea_reactome() are:
Examples
data(p53_dataset)
s = p53_dataset$s2n
gs = p53_dataset$gs
diff = names(s)[abs(s) > 0.3]
ora(diff, gs) |> head()
#> gene_set n_hits n_genes n_gs n_total log2fe z_score
#> 347 SA_G1_AND_S_PHASES 6 307 15 5602 2.867703 5.881640
#> 466 P53_UP 9 307 40 5602 2.037628 4.746167
#> 160 hsp27Pathway 5 307 16 5602 2.511560 4.535180
#> 302 p53Pathway 5 307 16 5602 2.511560 4.535180
#> 154 gsPathway 3 307 6 5602 3.189631 4.793623
#> 66 chrebpPathway 5 307 20 5602 2.189631 3.842107
#> p_value p_adjust
#> 347 8.475401e-05 0.04237701
#> 466 2.397667e-04 0.05994168
#> 160 1.265963e-03 0.15824542
#> 302 1.265963e-03 0.15824542
#> 154 2.879892e-03 0.23433797
#> 66 3.749408e-03 0.23433797
diff2 = convert_to_entrez(diff)
#> gene id might be SYMBOL (p = 0.660 )
#> 'select()' returned 1:many mapping between keys and columns
ora_go(diff2) |> head()
#> gene_set n_hits n_genes n_gs n_total log2fe z_score p_value
#> 8046 GO:1901700 93 497 1704 18986 1.0599955 7.695987 5.433047e-12
#> 1280 GO:0007155 86 497 1553 18986 1.0809690 7.521060 1.916316e-11
#> 4185 GO:0042592 90 497 1767 18986 0.9603131 6.843988 4.892569e-10
#> 5355 GO:0048871 54 497 832 18986 1.3099941 7.154667 7.558000e-10
#> 5620 GO:0051240 87 497 1724 18986 0.9469458 6.623663 1.598871e-09
#> 1697 GO:0009607 86 497 1704 18986 0.9471015 6.582795 2.015310e-09
#> p_adjust description
#> 8046 4.989710e-08 response to oxygen-containing compound
#> 1280 8.799723e-08 cell adhesion
#> 4185 1.497778e-06 homeostatic process
#> 5355 1.735317e-06 multicellular organismal-level homeostasis
#> 5620 2.936806e-06 positive regulation of multicellular organismal process
#> 1697 3.084768e-06 response to biotic stimulus
ora_msigdb(diff2) |> head()
#> gene_set n_hits n_genes n_gs n_total log2fe
#> 37 HALLMARK_P53_PATHWAY 21 207 200 4384 1.1530064
#> 34 HALLMARK_MYOGENESIS 20 207 200 4384 1.0826170
#> 7 HALLMARK_APOPTOSIS 14 207 161 4384 0.8809832
#> 2 HALLMARK_ALLOGRAFT_REJECTION 16 207 200 4384 0.7606889
#> 25 HALLMARK_INFLAMMATORY_RESPONSE 16 207 200 4384 0.7606889
#> 45 HALLMARK_TNFA_SIGNALING_VIA_NFKB 15 207 200 4384 0.6675795
#> z_score p_value p_adjust
#> 37 3.943274 0.0003993388 0.01996694
#> 34 3.602059 0.0010293788 0.02573447
#> 7 2.421934 0.0188585130 0.25586664
#> 2 2.237199 0.0255866637 0.25586664
#> 25 2.237199 0.0255866637 0.25586664
#> 45 1.895984 0.0490656010 0.40888001